Less is More: Picking Informative Frames for Video Captioning ECCV 2018

Yangyu Chen¹, Shuhui Wang^{2*}, Weigang Zhang³ and Qingming Huang^{1,2}

 1 University of Chinese Academy of Science, Beijing, 100049, China 2 Key Lab of Intell. Info. Process., Inst. of Comput. Tech., CAS, Beijing, 100190, China 3 Harbin Inst. of Tech, Weihai, 264200, China yangyu.chen@vipl.ict.ac.cn, wagshuhui@ict.ac.cn, wgghang@hit.edu.cn, qmhuang@ucas.ac.cn

2018-07-30

Video Captioning

- Seq2Seq translation:
 - encoding: use CNN and RNN to encode video content
 - decoding: use RNN to generate sentence conditioning on encoded feature

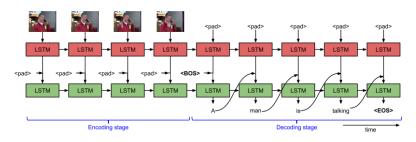


Figure 1: Standard encoder-decoder framework for video captioning¹

¹S. Venugopalan et al. "Sequence to sequence - video to text". In: *Proceedings of IEEE International Conference on Computer Vision*. Santiago: IEEE Computer Society Press, 2015, pp. 4534–4542.

Motivation

 Frame selection perspective: there are many frames with duplicated and redundant visual appearance information selected with equal interval frame sampling, and this will also involve remarkable computation expenditures.

(a) Equally sampled 30 frames from a video

(b) Informative frames

Figure 2: Video may contains many redundant information. The whole video can be represented by a small portion of frames (b), while equally sampled frames still contain redundant information (a).

Motivation

 Downstream task perspective: temporal redundancy may lead to an unexpected information overload on the visual-linguistic correlation analysis model, hence using more frames may not always lead to better performance.

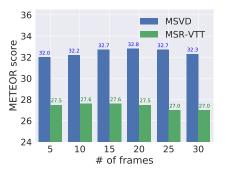


Figure 3: The best METEOR score on the validation set of MSVD and MSR-VTT when using different number of equally sampled frames. The standard Encoder-Decoder model is used to generate captions.

Picking Informative Frames for Captioning

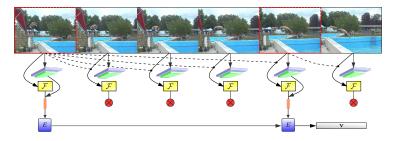
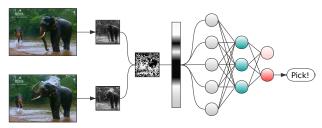


Figure 4: Insert PickNet into the encode-decode procedure for captioning.

- Insert PickNet before encoder-decoder.
 - ▶ Perform frame selection before processing downstream task.
 - Without annotations, we can try reinforcement training to optimize picking policy.

PickNet



Given an input image \mathbf{z}_t , and the last picking memory $\tilde{\mathbf{g}}$, PickNet produce a Bernoulli distribution for selecting decision:

$$\mathbf{d}_t = \mathbf{g}_t - \tilde{\mathbf{g}} \tag{1}$$

$$\mathbf{s}_t = W_2(\max(W_1 \mathsf{vec}(\mathbf{d}_t) + \mathbf{b}_1, \mathbf{0})) + \mathbf{b}_2 \tag{2}$$

$$a_t \sim \operatorname{softmax}(\mathbf{s}_t)$$
 (3)

$$\tilde{\mathbf{g}} \leftarrow \mathbf{g}_t$$
 (4)

where W_* and \mathbf{b}_* are parameters of our model, \mathbf{g}_t is the flattened gray-scale image, \mathbf{d}_t is the difference between gray-scale images. Other network structures (e.g., LSTM/GRU) can also be applied.

Rewards

 Visual diversity reward: the average cosine distance of each frame pairs

$$r_v(\mathcal{V}_i) = \frac{2}{N_p(N_p - 1)} \sum_{k=1}^{N_p - 1} \sum_{m>k}^{N_p} (1 - \frac{\mathbf{x}_k^{\mathbf{T}} \mathbf{x}_m}{\|\mathbf{x}_k\|_2 \|\mathbf{x}_m\|_2})$$
 (5)

- where V_i is a set of picked frames, N_p the number of picked frames, \mathbf{x}_k the feature of k-th picked frame.
- Language reward: the semantic similarity between generated sentence and ground-truth

$$r_l(\mathcal{V}_i, S_i) = \mathsf{CIDEr}(c_i, S_i)$$
 (6)

- \triangleright S_i is a set of annotated sentences, c_i is the generated sentence
- Picking limitation

$$r(\mathcal{V}_i) = \begin{cases} \lambda_l r_l(\mathcal{V}_i, S_i) + \lambda_v r_v(\mathcal{V}_i) & \text{if} \quad N_{\min} \leq N_p \leq N_{\max} \\ R^- & \text{otherwise}, \end{cases}$$

 $ightharpoonup N_p$ is the number of picked frames, R^- is the punishment

(7)

Training

Supervision stage: training the encoder-decoder.

$$L_{\mathsf{X}}(\mathbf{y};\omega) = -\sum_{t=1}^{m} \log(p_{\omega}(\mathbf{y}_{t}|\mathbf{y}_{t-1},\mathbf{y}_{t-2},\dots\mathbf{y}_{1},\mathbf{v}))$$
(8)

- $m{\omega}$ is the parameter of encoder-decoder, $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_m)$ is an annotated sentence, \mathbf{v} is the encoded result
- Reinforcement stage: training PickNet.

 - lacktriangledown heta is the action sequence
- Adaptation stage: training both encoder-decoder and PickNet.

$$L = L_{\mathsf{X}}(\mathbf{y}; \omega) + L_{R}(\mathbf{a}^{s}; \theta) \tag{10}$$

The combinatorial explosion of direct frame selection is avoided.

REINFORCE

- Use REINFORCE² algorithm to estimate gradients.
- Gradient expression:

$$\nabla_{\theta} L_R(\mathbf{a}^s; \theta) = -\mathbb{E}_{\mathbf{a}^s \sim p_{\theta}} \left[r(\mathbf{a}^s) \nabla_{\theta} \log p_{\theta}(\mathbf{a}^s) \right]$$
 (11)

Based on chain-ruler:

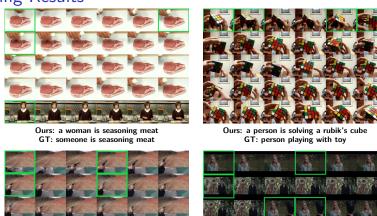
$$\nabla_{\theta} L_{R}(\mathbf{a}^{s}; \theta) = \sum_{t=1}^{T} \frac{\partial L_{R}(\theta)}{\partial \mathbf{s}_{t}} \frac{\partial \mathbf{s}_{t}}{\partial \theta} = \sum_{t=1}^{T} -\mathbb{E}_{\mathbf{a}^{s} \sim p_{\theta}} r(\mathbf{a}^{s}) (p_{\theta}(a_{t}^{s}) - \mathbf{1}_{a_{t}^{s}}) \frac{\partial \mathbf{s}_{t}}{\partial \theta}$$
(12)

Apply Monte-Carlo sampling:

$$\nabla_{\theta} L_R(\mathbf{a}^s; \theta) \approx -\sum_{t=1}^{T} r(\mathbf{a}^s) (p_{\theta}(a_t^s) - \mathbf{1}_{a_t^s}) \frac{\partial \mathbf{s}_t}{\partial \theta}$$
(13)

²R. J. Williams. "Simple statistical gradient-following algorithms for connectionist reinforcement learning". In: *Machine learning* 8.3-4 (1992), pp. 229–256.

Picking Results



Ours: a man is shooting a gun GT: a man is shooting

Ours: there is a woman is talking with a woman GT: it is a movie

Figure 5: Example results on MSVD and MSR-VTT. The green boxes indicate picked frames.

Picking Results

We investigate our method on three types of artificially combined videos:

- a) two identical videos;
- b) two semantically similar videos;
- c) two semantically dissimilar videos.

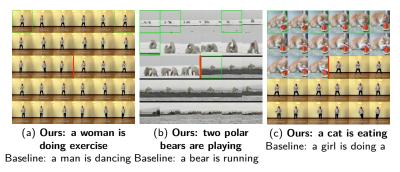


Figure 6: Example results on joint videos. Green boxes indicate picked frames. The baseline method is Enc-Dec on equally sampled frames.

Analysis

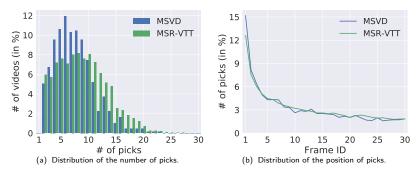


Figure 7: Statistics on the behavior of our PickNet.

- In the vast majority of the videos, less than 10 frames are picked.
- The probability of picking a frame is reduced as time goes by.

Performance

model	BLEU4	ROUGE-L	METEOR	CIDEr	time		
Previous Works							
LSTM-E	45.3	-	31.0	-	5x		
<i>p</i> -RNN	49.9	-	32.6	65.8	5×		
HRNE	43.8	-	33.1	-	33x		
BA	42.5	-	32.4	63.5	12x		
Baselines							
Full	44.8	68.5	31.6	69.4	5x		
Random	35.6	64.5	28.4	49.2	2.5x		
k-means (k =6)	45.2	68.5	32.4	70.9	1x		
Hecate	43.2	67.4	31.7	68.8	1×		
Our Models							
PickNet (V)	46.3	69.3	32.3	75.1	1x		
PickNet (L)	49.9	69.3	32.9	74.7	1×		
PickNet (V+L)	52.3	69.6	33.3	76.5	1x		

Table 1: Experiment results on MSVD. All values are reported as percentage(%). L denotes using language reward and V denotes using visual diversity reward. k is set to the average number of picks $\bar{N_p}$ on MSVD. $(\bar{N_p}\approx 6)$

Performance

model	BLEU4	ROUGE-L	METEOR	CIDEr	time		
Previous Works							
ruc-uva	38.7	58.7	26.9	45.9	4.5x		
Aalto	39.8 59.8 26		26.9	45.7	4.5x		
DenseVidCap 41.4		61.1	28.3	48.9	10.5×		
MS-RNN 39.8		59.3	26.1 40.9		10×		
Baselines							
Full	36.8	59.0	26.7	41.2	3.8x		
Random	31.3	55.7	25.2	32.6	1.9×		
k-means (k =8)	k-means (k =8) 37.8		26.9	41.4	1x		
Hecate 37.3		59.1	26.6	40.8	1x		
Our Models							
PickNet (V)	36.9	58.9	26.8	40.4	1x		
PickNet (L)	37.3	58.9	27.0	41.9	1x		
PickNet (V+L)	ckNet (V+L) 39.4		27.3	42.3	1x		
PickNet (V+L+C)	PickNet (V+L+C) 41.3		27.7	44.1	1x		

Table 2: Experiment results on MSR-VTT. All values are reported as percentage(%). C denotes using the provided category information. k is set to the average number of picks \bar{N}_p on MSR-VTT. $(\bar{N}_p \approx 8)$

Time Estimation

Model	Appearance	Motion	Sampling method	Frame num.	Time	
Previous Work						
LSTM-	VGG (0.5x)	C3D (2x)	uniform sampling 30 frames	30 (5x)	5x	
p-RNN	VGG (0.5x)	C3D (2x)	uniform sampling 30 frames	30 (5x)	5x	
HRNE	GoogleNet (0.5x)	C3D (2x)	first 200 frames	200 (33x)	33x	
BA	ResNet (0.5x)	C3D (2x)	every 5 frames	72 (12x)	12x	
Our Models						
Baseline	ResNet (1x)	×	uniform sampling 30 frames	30 (5x)	5x	
Random	ResNet (1x)	×	randomly sampling	15 (2.5x)	2.5x	
k-means (k =6)	ResNet (1x)	×	k-means clustering	6 (1x)	1×	
Hecate	ResNet (1x)	×	video summarization	6 (1x)	1×	
PickNet (V)	ResNet (1x)	×	picking	6 (1x)	1×	
PickNet (L)	ResNet (1x)	×	picking	6 (1x)	1×	
PickNet (V+L)	ResNet (1x)	×	picking	6 (1x)	1×	

Table 3: Running time estimation on MSVD. OF means optical flow. BA uses ResNet50 while our models use ResNet152. k is set to the average number of picks $\bar{N_p}$ on MSVD. $(\bar{N_p} \approx 6)$

Time Estimation

Model	Appearance	Motion	Sampling method	Frame num.	Time	
Previous Work						
ruc-uva	GoogleNet (0.5x)	C3D (2x)	every 10 frames	36 (4.5x)	4.5x	
Aalto	GoogleNet (0.5x)	C3D+IDT (2x)	one frame every second	36 (4.5x)	4.5x	
DenseCap	ResNet (0.5x)	C3D (2x)	sampling 90 frames	90 (10.5x)	10.5x	
MS-RNN	ResNet (1x)	C3D (2x)	uniform sampling 40 frames	40 (5x)	10x	
Our Models						
Baseline	ResNet (1x)	×	uniform sampling 30 frames	30 (3.8x)	3.8x	
Random	ResNet (1x)	×	randomly sampling	15 (1.9x)	1.9x	
k-means (k =8)	ResNet (1x)	×	k-means clustering	8 (1x)	1x	
Hecate	ResNet (1x)	×	video summarization	8 (1x)	1x	
PickNet (V)	ResNet (1x)	×	picking	8 (1x)	1×	
PickNet (L)	ResNet (1x)	×	picking	8 (1x)	1x	
PickNet (V+L)	ResNet (1x)	×	picking	8 (1x)	1×	

Table 4: Running time estimation on MSR-VTT. IDT means improved dense trajectory. DenseCap uses ResNet50 while our models use ResNet152. k is set to the average number of picks \bar{N}_p on MSR-VTT. $(\bar{N}_p \approx 8)$

Online Captioning

- When PickNet select one frame, it means that new information appears.
- Then the encode-decoder is triggered by PickNet and a more detailed description is generated.

(a) a cat is licking its lips \rightarrow a woman is a baby \rightarrow a woman is a baby \rightarrow a woman is feeding a baby \rightarrow a woman is playing with a kitten

(b) a boy is running \rightarrow a boy is running \rightarrow a boy is running \rightarrow the boys are dancing \rightarrow three persons are dancing

(c) a man is a sword \rightarrow a boy is doing a \rightarrow a man with a sword stabs a target \rightarrow a man is stabbing a silhouette with a sword \times 2

Conclusion

- Flexibility. a plug-and-play reinforcement-learning-based
 PickNet to pick informative frames for video understanding tasks.
- Efficiency. The architecture can largely cut down the usage of convolution operations. It makes our method more applicable for real-world video processing.
- Effectiveness. Experiment shows that our model can achieve comparable or even better performance compared to state-of-the-art while only a small number of frames are used.

Thanks!